NETWORKS OF QUEUES

Software Performance Engineering

Our analysis thus far

- We define metrics for each system to measure performance
- We use the exponential distribution
 - To analyze inter-arrival times in a Markovian stochastic system
 - For a single random variable, e.g. "customers arriving"
- We use multiple random variables to compute various metrics
 - Customer arrival
 - Service time
- ...but...
- Systems have more than one queue!
 - M/M/m queues where m>1

Central Server Model

Visit Ratio

- How do we measure a network of queues? How does that translate to our existing mathematical formulas?
- Visit Ratio V

- The relative number of visits to each devices for one job
- Defined over each device, i.e. V_i
- Include the processor in that count
- Could be thought of as "visits per job", BUT...
- ...typically expressed as a unitless weight,
- For example, our server model
 - $V_{CPU} = 1 + V_{IO1} + V_{IO2} + V_{IO3}$
 - Every visit to an IO is accompanied by a CPU visit

Device Ratios Will Differ

- Note that IO1, IO2, and IO3 need not be the same numbers!
- It all depends on:
 - The service time of the current job on the CPU
 - The service time of the IO device
 - Queuing discipline of each
 - Queuing discipline of CPU
- Thus, in practice, we try to measure utilization on each queue in the queuing network to get an accurate visit ratio

Forced Flow Law

- Throughput of individual devices in the system increase in proportion to the global system throughput of X_{global}
 - $\begin{array}{ll} & X_i = V_i X_{global} \\ \text{for device } i \leq m \end{array}$
 - Throughput
 - Again, we usually express V_i as unitless so we equate jobs & visits
- Let's define Demand D_i on any device as
 - $D_i = V_i S_i$ for mean service times S_i
 - A weighted time for each job
 - e.g. A disk takes 2ms to write, and is visited 3 times per job, thus the Demand will be 6ms per job
 - Translating to Utilization...
 - $X_i S_i = V_i S_i X_{global}$ (multiply by S_i on both sides)
 - $U_i = X_{global}D_i$ (apply Utilization law & sub in Demand)

Upper Bounds on *X*_{global}

- Saturation: Utilization of any server must always be <1
 - $U_i < 1$ thus
 - $X_{global}D_i < 1$
- And if that's true for all D_i , then it must be true for the highest D_i , call it D_{max}
- Therefore: $X_{global} < \frac{1}{D_{max}}$
 - This is called a *bottleneck*
 - The global throughput of the system will be bounded by the reciprocal of the demand of the bottleneck device

e.g. 2 slow IO devices, fast CPU

- Suppose we have a system with two hard drives and a CPU
- Mean service times:
 - S_{SSD} = 3ms, S_{HDD} = 5ms, S_{CPU} = 1ms
- Visit ratios:
 - V_{SSD} = 6, V_{HDD} = 3
 - So: $V_{CPU} = 1 + 6 + 3 = 10$
- Demands:
 - *D_{SSD}*=3ms*6=18ms
 - D_{HDD} =5ms*3=15ms
 - $D_{CPU} = 1 \text{ms} \times 10 = 10 \text{ms}$
- Max system throughput:
 - $X_{global} < \frac{1}{18ms}$
 - $X_{global} < 0.056$ jobs/ms
 - Or X_{global} < 56 jobs/s

e.g. slow IO devices, slower CPU

- Suppose we have a system with two hard drives and a CPU
- Mean service times:
 - S_{SSD} =3ms, S_{HDD} =5ms, S_{CPU} =<u>8ms</u>
- Visit ratios: (same as before)
 - V_{SSD} =6, V_{HDD} =3
 - So: $V_{CPU} = 1 + 6 + 3 = 10$
- Demands:
 - D_{SSD} =3ms*6=18ms
 - D_{HDD} =5ms*3=15ms
 - $D_{CPU} = 8ms*10=80ms$
- Max system throughput:
 - $X_{global} < \frac{1}{80ms}$
 - $X_{global} < 0.0125$ jobs/ms
 - Or X_{global} < 12.5 jobs/s

General Response Time Law

Overall system response times:

- $R_{global} = \sum_{i}^{m} V_i R_i$

- Lower bounds? Assume no other jobs in the system, then a job's lower bound is:
 - $R_{global} \ge \sum_{i}^{m} V_i S_i$
 - i.e. $R_{global} \geq \sum_{i}^{m} D_{i}$